skip to main content


Search for: All records

Creators/Authors contains: "Spellman, Katie V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Context

    Climate change is altering suitable habitat distributions of many species at high latitudes. Fleshy fruit-producing plants (hereafter, “berry plants”) are important in arctic food webs and as subsistence resources for human communities, but their response to a warming and increasingly variable climate at a landscape scale has not yet been examined.

    Objectives

    We aimed to identify environmental determinants of berry plant distribution and predict how climate change might shift these distributions.

    Methods

    We used species distribution models to identify characteristics and predict the distribution of suitable habitat under current (2006–2013) and future climate conditions (2081–2100; representative concentration pathways 4.5, 6.0, & 8.5) for five berry plant species:Vaccinium uliginosumL.,Empetrum nigrumL.,Rubus chamaemorusL.,Vaccinium vitis-idaeaL., andViburnum edule(Michx.) Raf..

    Results

    Elevation, soil characteristics, and January and July temperatures were important drivers of habitat distributions. Future suitable habitat predictions showed net declines in suitable habitat area for all species modeled under almost all future climate scenarios tested.

    Conclusions

    Our work contributes to understanding potential geographic shifts in suitable berry plant habitat with climate change at a landscape scale. Shifting and retracting distributions may alter where communities can harvest, suggesting that access to these resources may become restricted in the future. Our prediction maps may help inform climate adaptation planning as communities anticipate shifting access to harvesting locations.

     
    more » « less
  2. Free, publicly-accessible full text available December 31, 2024
  3. Community and citizen science on climate change-influenced topics offers a way for participants to actively engage in understanding the changes and documenting the impacts. As in broader climate change education, a focus on the negative impacts can often leave participants feeling a sense of powerlessness. In large scale projects where participation is primarily limited to data collection, it is often difficult for volunteers to see how the data can inform decision making that can help create a positive future. In this paper, we propose and test a method of linking community and citizen science engagement to thinking about and planning for the future through scenarios story development using the data collected by the volunteers. We used a youth focused wild berry monitoring program that spanned urban and rural Alaska to test this method across diverse age levels and learning settings. Using qualitative analysis of educator interviews and youth work samples, we found that using a scenario stories development mini-workshop allowed the youth to use their own data and the data from other sites to imagine the future and possible actions to sustain berry resources for their communities. This process allowed youth to exercise key cognitive skills for sustainability, including systems thinking, futures thinking, and strategic thinking. The analysis suggested that youth would benefit from further practicing the skill of envisioning oneself as an agent of change in the environment. Educators valued working with lead scientists on the project and the experience for youth to participate in the interdisciplinary program. They also identified the combination of the berry data collection, analysis and scenarios stories activities as a teaching practice that allowed the youth to situate their citizen science participation in a personal, local and cultural context. The majority of the youth groups pursued some level of stewardship action following the activity. The most common actions included collecting additional years of berry data, communicating results to a broader community, and joining other community and citizen science projects. A few groups actually pursued solutions illustrated in the scenario stories. The pairing of community and citizen science with scenario stories development provides a promising method to connect data to action for a sustainable and resilient future. 
    more » « less
  4. The Arctic is undergoing large-scale changes that are likely to accelerate in future decades such as introductions and expansions of invasive species. The Arctic is in a unique position to prevent new introductions and spread of existing invasive species by adopting policies and actions aimed at early detection. Responding to threats from invasive species to minimize impacts to ecosystems, communities, food security, and northern economies will necessitate extensive observations and monitoring, but resource managers often face decisions without having adequate data and resources at hand. Local observing programs such as citizen science and community-based monitoring programs present attractive methods for increasing observing capacity that span contributory and co-created approaches while raising awareness of an issue among stakeholders. While the co-created model has been widely applied and encouraged in the Arctic context, contributory citizen science programs offer an additional tool for addressing observing needs in the Arctic. We showcase three contributory citizen science programs related to freshwater, terrestrial, and marine environments that have supported the objectives of the Alaska Invasive Species Partnership. We discuss criteria for achieving ARIAS priority actions at the participant scale related to participants’ motivation and participants’ understanding of the value of their contributions, at the programmatic scale, for example promoting accessible, reciprocal, and transparent knowledge exchange, and at the policy and science scale where management action is data driven. The approach is aimed at successful integration of citizen science into Arctic policy making. Finally, we discuss challenges related to broader global data collection and future directions for contributory citizen science within Arctic observing networks. 
    more » « less
  5. null (Ed.)
    Abstract Effective responses to rapid environmental change rely on observations to inform planning and decision-making. Reviewing literature from 124 programs across the globe and analyzing survey data for 30 Arctic community-based monitoring programs, we compare top-down, large-scale program driven approaches with bottom-up approaches initiated and steered at the community level. Connecting these two approaches and linking to Indigenous and local knowledge yields benefits including improved information products and enhanced observing program efficiency and sustainability. We identify core principles central to such improved links: matching observing program aims, scales, and ability to act on information; matching observing program and community priorities; fostering compatibility in observing methodology and data management; respect of Indigenous intellectual property rights and the implementation of free, prior, and informed consent; creating sufficient organizational support structures; and ensuring sustained community members’ commitment. Interventions to overcome challenges in adhering to these principles are discussed. 
    more » « less
  6. null (Ed.)
    In interior Alaska, increases in growing season length and rapid expansion of introduced species are altering the environment for native plants. We evaluated whether earlier springs, warmer summers, and extended autumns alter the phenology of leaves and flowers in native and introduced forbs and shrubs in the boreal understory and open-canopy habitats, and whether the responses provide an advantage to either group. We tracked the phenology of 29 native and 12 introduced species over three years with very different spring, summer, and autumn conditions. The native species produced flowers (but not leaves) earlier than the introduced species, and both groups advanced leaf-out and flowering in the early-snowmelt year. However, shifts in phenology between early and late years were similar for both groups. There was no increase in fruit development rate for either group in the warm summer. In contrast, in the year with the extended autumn, the introduced plants extended leaf production and time of senescence much more than native species. While growth form and leaf habit could explain the differences in phenology between native and introduced groups in spring and summer, these traits could not account for differences in autumn. We conclude that in boreal Alaska extended autumns may benefit introduced species more than native ones. 
    more » « less
  7. A widespread adaptive change in antiherbivore response is seen in a common plant species in urban environments across 160 cities. 
    more » « less